

EPO-TEK[®] P1011S

Technical Data Sheet For Reference Only

Electrically Conductive Modified Polyimide

Date:June 2020Rev:VIINo. of Components:SingleMix Ratio by Weight:N/ASpecific Gravity:2.44Pot Life:N/ADry Time: 7 DaysShelf Life- Bulk:One year refrigerated

Recommended Cure:

Pre-Bake:30 Minutes @ 80°C (max)Cure:1 Hour @ 150°C (with or without vacuum)Post-cure:90 Minutes @ 285°C

NOTES:

• Container(s) should be kept closed when not in use.

• Filled systems should be stirred thoroughly before mixing and prior to use.

• Performance properties (rheology, conductivity, others) of the product may vary from those stated on the data sheet when bi-pak/syringe packaging or post-processing of any kind is performed. Epoxy's warranties shall not apply to any products that have been reprocessed or repackaged from Epoxy's delivered status/container into any other containers of any kind, including but not limited to syringes, bi-paks, cartridges, pouches, tubes, capsules, films or other packages.

Product Description: EPO-TEK® P1011S is a single component, modified polyimide, high temperature grade, silver-filled electrically and thermally conductive adhesive designed for semiconductor die-attach and hybrid microelectronic packaging.

Typical Properties: Cure condition: varies as required Different batches, conditions & applications yield differing results. Data below is not guaranteed. To be used as a guide only, not as a specification. * denotes test on lot acceptance basis

PHYSICAL PROPERTIES:		
* Color (before cure):	Silver	
* Consistency:	Smooth slightly	thixotropic paste
* Viscosity (23°C) @ 20 rpm:	6,500 - 10,500	cPs
Thixotropic Index:	1.8	
Glass Transition Temp:	Not detected	
Coefficient of Thermal Expansion (C	TE):	
Below	v Tg: 28	x 10 ⁻⁶ in/in°C
Above	e Tg: 57	x 10 ⁻⁶ in/in°C
Shore D Hardness:	71	
Lap Shear @ 23°C:	N/A	
Die Shear @ 23°C:	≥ 4	Kg 1,422 psi
Degradation Temp:	379	C
Weight Loss:		
@ 20	0°C: 0.08	%
@ 25	0°C: 0.09	%
@ 30	0°C: 0.16	%
Suggested Operating Temperature:	< 325	°C (Intermittent)
Storage Modulus:	639,262	psi
* Particle Size:	≤ 20	microns
ELECTRICAL AND THERMAL PROPERTIES:		
Thermal Conductivity:	> 2.8	W/mK
* Volume Resistivity @ 23°C:	≤ 0.0005	Ohm-cm
Dielectric Constant (1KHz):	N/A	
Dissipation Factor (1KHz):	N/A	

EPO-TEK® P1011S Technical Data Sheet For Reference Only Electrically Conductive Modified Polyimide

EPO-TEK[®] P1011S Advantages & Suggested Application Notes:

- It is a lower viscosity version of EPO-TEK[®] P1011 for improved die-stamping or pin transfer process methods.
- Suggested applications in hybrid micro-electronics:
 - Resisting ceramic or metal SMD lid sealing processes >300°C.
 - Die attaching quartz crystal oscillators to the Au post of TO-cans or Au/ pads on ceramic PCBs.
 - o Down-hole petrochemical circuits.
 - o Atomic clocks, microwave or millimeter wave circuits.
 - Die-attaching LED and EEPROM chips inside alpha numeric displays, resisting glass lid-sealing processes >300°C.
- A two-step cure is suggested for optimal adhesive properties.
- Available in alternative viscosities. Contact <u>techserv@epotek.com</u> for your best recommendation.