Epoxy Technology, Inc. offers a complete line of high performance Ultraviolet (UV) cure adhesives ranging in viscosity, flexibility, refractive index and light transmission. UV cure epoxy provides advantages such as extremely fast curing rates, single component (no mixing) chemistries, solventless, accurate alignment of components, ease of automation, improved production rates and thermal energy savings over conventional systems (little power consumption) by the elimination of all or part of curing by heat.

The selection of an adhesive for a specific application depends on many factors such as viscosity, post-cure strength and hardness, shrinkage, Tg, the type of surface to be bonded, surface transparency, bond area and design/geometry. One must also consider the application method, such as having the proper viscosity rheology to accurately deposit and apply the material. Another important criterion is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms.

Another important criteria is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms. UV Cure Epoxies

Epoxy Technology, Inc. offers a complete line of high performance Ultraviolet (UV) cure adhesives ranging in viscosity, flexibility, refractive index and light transmission. UV cure epoxy provides advantages such as extremely fast curing rates, single component (no mixing) chemistries, solventless, accurate alignment of components, ease of automation, improved production rates and thermal energy savings over conventional systems (little power consumption) by the elimination of all or part of curing by heat.

The selection of an adhesive for a specific application depends on many factors such as viscosity, post-cure strength and hardness, shrinkage, Tg, the type of surface to be bonded, surface transparency, bond area and design/geometry. One must also consider the application method, such as having the proper viscosity rheology to accurately deposit and apply the material. Another important criterion is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms.

Another important criteria is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms. UV Cure Epoxies

Epoxy Technology, Inc. offers a complete line of high performance Ultraviolet (UV) cure adhesives ranging in viscosity, flexibility, refractive index and light transmission. UV cure epoxy provides advantages such as extremely fast curing rates, single component (no mixing) chemistries, solventless, accurate alignment of components, ease of automation, improved production rates and thermal energy savings over conventional systems (little power consumption) by the elimination of all or part of curing by heat.

The selection of an adhesive for a specific application depends on many factors such as viscosity, post-cure strength and hardness, shrinkage, Tg, the type of surface to be bonded, surface transparency, bond area and design/geometry. One must also consider the application method, such as having the proper viscosity rheology to accurately deposit and apply the material. Another important criterion is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms.

Another important criteria is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms. UV Cure Epoxies

Epoxy Technology, Inc. offers a complete line of high performance Ultraviolet (UV) cure adhesives ranging in viscosity, flexibility, refractive index and light transmission. UV cure epoxy provides advantages such as extremely fast curing rates, single component (no mixing) chemistries, solventless, accurate alignment of components, ease of automation, improved production rates and thermal energy savings over conventional systems (little power consumption) by the elimination of all or part of curing by heat.

The selection of an adhesive for a specific application depends on many factors such as viscosity, post-cure strength and hardness, shrinkage, Tg, the type of surface to be bonded, surface transparency, bond area and design/geometry. One must also consider the application method, such as having the proper viscosity rheology to accurately deposit and apply the material. Another important criterion is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms.

Another important criteria is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms. UV Cure Epoxies

Epoxy Technology, Inc. offers a complete line of high performance Ultraviolet (UV) cure adhesives ranging in viscosity, flexibility, refractive index and light transmission. UV cure epoxy provides advantages such as extremely fast curing rates, single component (no mixing) chemistries, solventless, accurate alignment of components, ease of automation, improved production rates and thermal energy savings over conventional systems (little power consumption) by the elimination of all or part of curing by heat.

The selection of an adhesive for a specific application depends on many factors such as viscosity, post-cure strength and hardness, shrinkage, Tg, the type of surface to be bonded, surface transparency, bond area and design/geometry. One must also consider the application method, such as having the proper viscosity rheology to accurately deposit and apply the material. Another important criterion is refractive index. The refractive index of a material is the most important property of any optical system that transmits light. It is also used to calculate the focusing power of lenses, and the dispersive power of prisms.
EPO-TEK® UV Cure epoxy adhesives are commonly used in a variety of applications such as: encapsulation, glob-top, coatings, and bonding. Specifically, they are a fast way to bond fiber (fiber optics) arrays in a waveguide module in passive alignment. Also used in fiber optic pigtailling to diodes where the UV cure material is ideal for fiber alignment to the diode. Other applications may include: LCD plugging and sealing, OLED environmental protection and micro-array for CCD/CMOS camera optics.

With low water vapor absorption and very low outgassing, UV adhesives are also suitable for many demanding electronic applications. Additionally, many UV cure epoxy adhesives cure in a matter of seconds or minutes, have good temperature and excellent chemical resistance, therefore making them ideal for challenging application environments.

Epoxy Technology, Inc. also offers several USP Class VI bio-compatible UV cure adhesives for implantable medical devices.

Please consult our Applications Experts at Epoxy Technology to find the most suitable adhesives for specific technical challenges.

www.EPOTEK.com